In SwiftNIO before 1.8.0, a buffer overflow was addressed with improved size validation.
swiftnio
CVE-2019-9512
Some HTTP/2 implementations are vulnerable to ping floods, potentially leading to a denial of service. The attacker sends continual pings to an HTTP/2 peer, causing the peer to build an internal queue of responses. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2022-3215
NIOHTTP1 and projects using it for generating HTTP responses can be subject to a HTTP Response Injection attack. This occurs when a HTTP/1.1 server accepts user generated input from an incoming request and reflects it into a HTTP/1.1 response header in some form. A malicious user can add newlines to their input (usually in encoded form) and “inject” those newlines into the returned HTTP response. This capability allows users to work around security headers and HTTP/1.1 framing headers by injecting entirely false responses or other new headers. The injected false responses may also be treated as the response to subsequent requests, which can lead to XSS, cache poisoning, and a number of other flaws. This issue was resolved by adding validation to the HTTPHeaders type, ensuring that there’s no whitespace incorrectly present in the HTTP headers provided by users. As the existing API surface is non-failable, all invalid characters are replaced by linear whitespace.