On Xilinx Zynq-7000 SoC devices, physical modification of an SD boot image allows for a buffer overflow attack in the ROM. Because the Zynq-7000’s boot image header is unencrypted and unauthenticated before use, an attacker can modify the boot header stored on an SD card so that a secure image appears to be unencrypted, and they will be able to modify the full range of register initialization values. Normally, these registers will be restricted when booting securely. Of importance to this attack are two registers that control the SD card’s transfer type and transfer size. These registers could be modified a way that causes a buffer overflow in the ROM.
CWE-120
CVE-2021-44622
A Buffer Overflow vulnerability exists in TP-LINK WR-886N 20190826 2.3.8 in the /cloud_config/router_post/check_reg_verify_code function which could let a remove malicious user execute arbitrary code via a crafted post request.
CVE-2021-44623
A Buffer Overflow vulnerability exists in TP-LINK WR-886N 20190826 2.3.8 via the /cloud_config/router_post/check_reset_pwd_verify_code interface.
CVE-2021-44625
A Buffer Overflow vulnerability exists in TP-LINK WR-886N 20190826 2.3.8 in /cloud_config/cloud_device/info interface, which allows a malicious user to executee arbitrary code on the system via a crafted post request.
CVE-2021-44626
A Buffer Overflow vulnerability exists in TP-LINK WR-886N 20190826 2.3.8 in the /cloud_config/router_post/get_reg_verify_code feature, which allows malicious users to execute arbitrary code on the system via a crafted post request.
CVE-2021-44627
A Buffer Overflow vulnerability exists in TP-LINK WR-886N 20190826 2.3.8 in the /cloud_config/router_post/get_reset_pwd_veirfy_code feature, which allows malicious users to execute arbitrary code on the system via a crafted post request.