In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `SparseFillEmptyRowsGrad` implementation has incomplete validation of the shapes of its arguments. Although `reverse_index_map_t` and `grad_values_t` are accessed in a similar pattern, only `reverse_index_map_t` is validated to be of proper shape. Hence, malicious users can pass a bad `grad_values_t` to trigger an assertion failure in `vec`, causing denial of service in serving installations. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.”
CWE-20
CVE-2020-15197
In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has rank 2. This tensor must be a matrix because code assumes its elements are accessed as elements of a matrix. However, malicious users can pass in tensors of different rank, resulting in a `CHECK` assertion failure and a crash. This can be used to cause denial of service in serving installations, if users are allowed to control the components of the input sparse tensor. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
CVE-2020-15199
In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the `splits` tensor has the minimum required number of elements. Code uses this quantity to initialize a different data structure. Since `BatchedMap` is equivalent to a vector, it needs to have at least one element to not be `nullptr`. If user passes a `splits` tensor that is empty or has exactly one element, we get a `SIGABRT` signal raised by the operating system. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
CVE-2020-15206
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, changing the TensorFlow’s `SavedModel` protocol buffer and altering the name of required keys results in segfaults and data corruption while loading the model. This can cause a denial of service in products using `tensorflow-serving` or other inference-as-a-service installments. Fixed were added in commits f760f88b4267d981e13f4b302c437ae800445968 and fcfef195637c6e365577829c4d67681695956e7d (both going into TensorFlow 2.2.0 and 2.3.0 but not yet backported to earlier versions). However, this was not enough, as #41097 reports a different failure mode. The issue is patched in commit adf095206f25471e864a8e63a0f1caef53a0e3a6, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
CVE-2020-15099
In TYPO3 CMS greater than or equal to 9.0.0 and less than 9.5.20, and greater than or equal to 10.0.0 and less than 10.4.6, in a case where an attacker manages to generate a valid cryptographic message authentication code (HMAC-SHA1) – either by using a different existing vulnerability or in case the internal encryptionKey was exposed – it is possible to retrieve arbitrary files of a TYPO3 installation. This includes the possibility to fetch typo3conf/LocalConfiguration.php, which again contains the encryptionKey as well as credentials of the database management system being used. In case a database server is directly accessible either via internet or in a shared hosting network, this allows the ability to completely retrieve, manipulate or delete database contents. This includes creating an administration user account – which can be used to trigger remote code execution by injecting custom extensions. This has been patched in versions 9.5.20 and 10.4.6.
CVE-2020-14955
In Jiangmin Antivirus 16.0.13.129, the driver file (KVFG.sys) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x220440.